
PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

Making Your Application Run Well in a
Multiscript Environment

A few techniques that will give your application polish on
International systems

Nat McCully, Senior Software Engineer, Apple Computer, Inc.

possible user base and therefore your prod-
uct’s revenue potential.

What is ‘Mojibake?’
Mojibake (“moh-jee-bah-keh”) is a

Japanese word for when a run of text is
displayed in the wrong script system, and
produces garbage characters that don’t
make any sense. An example is below:

Text in correct Text in wrong
(Japanese) font (Roman) font

Figure 1: Mojibake Example

This problem is one of the most com-
mon with applications that support
multiple fonts. What has happened is that
each byte in the text stream above has not
changed, but the font used to render it has.
This problem is a side-effect of the way in
which the MacOS supports so many lan-
guages, by grouping languages and their
fonts into script systems. A run of the same
raw text data will effectively change its
meaning (or lose it completely) depending
on which font is used to display it.

This means that unless the application
makes an effort to protect the user from
mojibake, it will likely happen, and this is a
bad thing. The user may think that their
data has become corrupted, and may panic,
telling all his or her friends how buggy
your software is.

It turns out that protecting the user
from mojibake is not such a big deal. It can
be easily defined and scoped so you will

Introduction
Many applications are sold in the U.S.

and Europe without any major changes to
their codebases for a specific country or
region. Sometimes this means that the non-
U.S. user runs into oddities of design or
implementation that aren’t quite right for
his or her language or region, because the
code assumes a U.S.-centric design. Using
“,” for the thousands separator in a number
field, or “/” for a short date separator in a
date are two examples. These defects are
not that serious, and in fact are avoidable if
the program uses the MacOS International
Utilities functions to extract region-specific
data from resources in the System, like the
correct thousands separator or date separa-
tor.

Once the product is to be distributed in
a region which uses a different script sys-
tem from that in the U.S., things can get a
bit more complicated. The U.S. uses the
Roman script system to display text and
other data, as does most of Europe. Japan,
however, uses the Japanese script system to
display text and other data, and therefore
some products that assume Roman script
behavior will not function properly, or
worse, will not function at all on a Japanese
system.

This paper will illustrate some tech-
niques you can use in your application so it
will run properly in a multi-script environ-
ment. These techniques allow your code to
be easily localizable into any language in
any script system, which will increase your

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

always know what the ‘right’ thing is to do
when you are handling text in multiple
fonts in a multiscript environment. For
example, you only need to worry about
mojibake when:

• The user’s system has more than one
script system installed

• There are characters in the Extended
ASCII (hi-ASCII) range (> ASCII 127)
in the text
Further, there are four possible situa-

tions in which mojibake can occur:
A. When the user chooses a keyscript

different from the script of the current
font and begins to type hi-ASCII char-
acters.

B. When the user selects text and chooses
a font from a different script than the
text’s current font AND there are hi-
ASCII characters in the selection.

C. When there is hi-ASCII in the text of
the user interface of your application
and you default to drawing it in a font
that can change (i.e. the appFond)
depending on the main script of the
system.

D. When you are importing text without
font information and must set the font
yourself to some default, e.g. plain text
import, or opening a document with
fonts not installed in the current system
AND there is hi-ASCII in the text
stream being imported.
Notice that in all four of those cases

there is a common attribute: Hi-ASCII text.
All fonts in all scripts (except for special
fonts in the Roman script, like Symbol)
share the same lo-ASCII characters, but
have different hi-ASCII characters depend-
ing on the script of the font. There are some
exceptions to this when a country has a
standard different from the ASCII standard
for character codes 0-127, but for most
purposes you as the application developer
can assume that if the character code is
<=127 and it is not part of a multi-byte

character, it will display the same glyph no
matter what font you are in. This is a pow-
erful piece of information, because it will
guide how you implement several of the
features mentioned in this paper.

Font Input Locking
This feature protects the user from

mojibake as they are inputting text, as in
situation A, above. The desired behavior in
that case is if the user is typing in a
keyscript that is different from the script of
the insertion font, then you must temporar-
ily “lock” the font to a font from the same
script as the keyscript. This font can be a
user preference, or you can simply use the
appFond or sysFond for that script.

Most applications that have word-
processing functionality buffer the text as it
is typed in, to maximize typing efficiency.
This means you have a tight loop that re-
peatedly gets keyDown events off the event
queue and stores the resulting text in a
buffer. When the user is using an Input
Method program to type in Japanese, once
they hit the return key to send to text to
your application, you will get a whole
stream of keyDown events in rapid succes-
sion, each keyDown representing a byte in
the stream of 2-byte characters. Once you
buffer the characters, you would insert the
text from that buffer into the document as a
chunk into the current stylerun, which has a
font attribute. It is the font attribute that
concerns us here. Sometimes the text being
inserted will be incompatible with the
current insertion font, and you will have to
create a new stylerun with a font that will
render the text properly.

Session-based Font Input Locking
Session-based Font Input Locking is

appropriate when the user is typing in a
non-Roman keyscript, where all the charac-
ters will be hi-ASCII, or multibyte
characters which mix hi-ASCII and lo-
ASCII together. In that case, all the

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

incoming characters will need to be
“locked” to a font from the same script as
the keyscript. As soon as the user switches
to a different keyscript, you can restore the
old insertion font.

Character-based Font Input Locking
Sometimes you only want to “lock” the

font of some of the characters in the buffer,
leaving the others in the insertion font. This
is the case when the user is typing in the
Roman keyscript, but the insertion font is
non-Roman. Most of the characters will be
lo-ASCII, but the user can also hold the
option key down and type a single hi-ASCII
character, which will need to be “font
locked” to a Roman font to display the
proper glyph. In this case, only that hi-
ASCII character needs to be in its own
stylerun, and you can restore the original
insertion font when the user types the next
lo-ASCII character. (See Figure 2). Another
case where Character-based Font Input
Locking is appropriate is when the user is
typing in the Japanese keyscript in a Roman
font run, but using the single-byte input
mode of their Input Method, resulting in lo-
ASCII characters that do not need to be font
locked. However, as soon as the user
switches to a mode which allows input of
single-byte hi-ASCII or 2-byte characters,
you will need to lock those characters to a
Japanese font. At all times during this input
session, the keyscript will be Japanese, so
you cannot assume all text input in Japa-
nese keyscript needs font locking when in a
Roman font.

Text is typed in Hi-ASCII ‘ç’ is font
a Japanese font locked to a Roman font

Figure 2: Character-based Font Input Locking

When organizing your code to support
font input locking, it helps to break down
the problem into separate parts of filtering
for hi-ASCII (either in a text buffer or as

keyDown events), and creating new
styleruns for text that needs to be font
locked. The following code (Listing 1 and
Listing 2) are simple examples of how to do
this.

Listing 1: Finding Hi-ASCII Characters in a
Buffer

BufferHasHiASCII
Loop through a buffer and stop when you find a hi-ASCII
character.

Boolean BufferHasHiASCII(uchar * buffer,
long length)
{

long index;

for (index = 0; index < length; index++)
{

if (buffer[index] & 0x80)
return TRUE;

}
return FALSE;

}

Listing 2: StyleRun Management Sample
FindStyleRunIndex
Each StyleRun structure has a starting character position
(startPos) and a font attribute. You would also have size, face,
etc. in a real application.

typedef struct tagStyleRun {
long startPos;
short font;

} StyleRun;

// Given an ordered array of StyleRun structures,
// find the one that
// corresponds to the given charPos.
long FindStyleRunIndex(StyleRun ** styles,

long numStyles, long charPos)
{

longindex;

for (index = 0; index < numStyles;
index++)

{
if ((*styles)[index].startPos <=

charPos)
break;

}
return index;

}

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

ExtendStyleRun
When extending the length of the current stylerun, all styleruns
following it must have their startPos member incremented so
they match up with the text.

void ExtendStyleRun(StyleRun ** styles,
long numStyles, long index, long amount)

{
++index;// the next style has the start

// we need to increment
while (index < numStyles)

(*styles)[index++].startPos += amount;
}

AddNewStyleRun
Adding styleruns to your text is at the core of font locking
functionality. All styleruns are stored in a Handle, and are in
order according to text order. You must bump the size of the
Handle and then insert your new style in at the appropriate
place.

Boolean AddNewStyleRun(StyleRun ** styles,
long * numStyles, long index, * newStyle,
long runLength)

{
// First try to increase the stylerun array handle
if (SetHandleSize((Handle)styles,

GetHandleSize((Handle)styles) +
sizeof(StyleRun))

{
// Then make room for the new stylerun in the array
BlockMove((Ptr)&(*styles)[index],

(Ptr)&(*styles)[index + 1],
sizeof(StyleRun) *
(*numStyles - index));

// Then copy the new stylerun into the array
BlockMove((Ptr)newStyle,

(Ptr)&(*styles)[index],
sizeof(StyleRun));

// increment size of array handle and index
(*numStyles)++;

// Increment start positions of each run after
// the new run
ExtendStyleRun(styles, *numStyles,

index, runLength);

return TRUE;
}
else

return FALSE;
}

Now let’s put these things to use. Say
you have a function that creates a buffer of
text as the user is typing, and when the user
is done, you process it for font locking, add
it to the document’s data, and then draw it
onscreen. Note that much of this code is

over-simplified to illustrate the concepts in
this paper; you should improve upon it
before using it in a real application.

Listing 3 shows how to make a
keyDown loop that gets keys until the user
stops typing rapidly or they change the
keyscript:

Listing 3: Fast Key Loop to Make Key Event
Buffer

DoKey
Loop until no more keyDown events or until keyscript changes.

void DoKey(Str255 buffer,
ScriptCode * keyScript)

{
EventRecord theEvent;
uchar char;

*keyScript =
GetScriptManagerVariable(smKeyScript);

while (
EventAvail(keyDownMask, &theEvent))

{
if (buffer[0] < 255 &&

*keyScript ==
 GetScriptManagerVariable(smKeyScript))
{

(void)GetNextEvent(keyDownMask,
&theEvent);

char = (uchar)(theEvent.message
& charCodeMask);

buffer[buffer[0]++] = char;
}
else

break;
}

}

Listing 4 shows how to take the buffer
and keyscript information from Listing 3,
and perform Font Input Locking before
adding the typed text to your document:

Listing 4: Font Input Locking
ProcessKeyDownWithFontLocking
Actually perform Font Input Locking using the functions
introduced earlier.

StyleRun ** gStyles; // styleruns in
// text

long gNumStyles;
uchar ** gText; // text data
long gTextLength;
long gCurCharPos; // where we are

// in the text

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

Boolean ProcessKeyDownWithFontLocking
(Str255 buffer, ScriptCode keyScript)

{
Boolean fontLocked = FALSE;
ScriptCode fontScript;
long curStyleIndex =

GetStyleRunIndex(gStyles,
gNumStyles, gCurCharPos);

StyleRun * curStylePtr;
StyleRun newStyle;
short curFont, goodFont;
long lastRunLength = buffer[0];
long index, subRunStart,

subRunLength = 0L;

// Add the text buffer to our text data handle...
if (SetHandleSize((Handle)gText,

GetHandleSize((Handle)gText) +
(long)buffer[0]))

{
BlockMove((Ptr)&(*gText)[gCurCharPos],

(Ptr)&(*gText)[gCurCharPos +
buffer[0]],
gTextLength - gCurCharPos);

BlockMove((Ptr)&buffer[1],
(Ptr)&(*gText)[gCurCharPos],
(long)buffer[0]);

gTextLength += buffer[0];
}
else

return FALSE;

// If more than one script system is installed
// and we have hi-ASCII
// we need to make new styleruns for each ‘locked’ run
if (GetScriptManagerVariable(smEnabled) >

1 && BufferHasHiASCII(
(uchar *)&buffer[1], (long)buffer[0]))

{
curStylePtr =

&((*gStyles)[curStyleIndex]);
curFont = curStylePtr->font;
fontScript = FontToScript(curFont);

// make styleruns for hi-ASCII and 2-byte chars in run
if (keyScript != fontScript)
{

BlockMove((Ptr)curStylePtr,
(Ptr)&newStyle, sizeof(StyleRun));

goodFont = GetScriptVariable(
keyScript, smScriptAppFond);

// loop thru sub-runs in buffer
for (index = 1;

index <= (long)buffer[0]; index++)
{

// find first sub-run that needs font locking
subRunStart = index;
while (index <= (long)buffer[0] &&

!(buffer[index] & 0x80))
index++;

// if lo-ASCII starts buffer, extend current
// stylerun by amount of lo-ASCII characters
if (!(buffer[subRunStart] & 0x80))

ExtendStyleRun(gStyles,
gNumStyles, subRunStart);

curStyleIndex++;

newStyle.startPos += index;
newStyle.font = goodFont;

// Find length of run that needs locking
while (((buffer[index] & 0x80) ||

CharacterByteType(
(Ptr)&buffer[1], index,
keyScript) != smSingleByte)) &&
index <= buffer[0])

{
index++;
subRunLength++;

}

AddNewStyle(gStyles, &gNumStyles,
curStyleIndex, &newStyle,
subRunLength);

lastRunLength = subRunLength;
subRunLength = 0;

}
fontLocked = TRUE;

}
}

// Increment all styleruns’ indices after the current one.
ExtendStyleRun(gStyles, gNumStyles,

curStyleIndex, lastRunLength);

return fontLocked;
}

Font Change Locking
Font Change Locking is the term for

when the user chooses a new font for a
selected run of text, but some of the text in
the run is hi-ASCII and in a font from a
different script than the chosen font, so that
text is not changed to the new font. This
remedies mojibake in situation B, above.

User selects text User chooses a
 in a Roman font Japanese font

Figure 3: Mojibake Without Font Change
Locking

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

User selects text User chooses a
 in a Roman font Japanese font

Figure 4: Font Change Locking ‘locks’ the ‘ñ’ to
a Roman font

The basic Font Change Locking algo-
rithm is:

• Check if font(s) in selection are of a
different script than the chosen font.

• If so, check if there are any hi-ASCII or
multibyte characters in the selection.

• If there are, create new styleruns for
each run of “locked” characters.

• Change the font of all characters that
are not “locked” to the chosen font.

Forcing the Font Change
Always allow the user to turn Font

Change Locking off and force the font to be
whatever they set it to, perhaps by holding
down a modifier key when they choose a
font. This is useful when you import a large
amount of raw text data and can’t be sure
which script system is appropriate to dis-
play the text in. You may guess wrong, in
which case the user will have to force-set
the font to be the proper one.

Font Menu – Keyboard
Synchronization
This feature prevents mojibake by

automatically setting the keyscript to a
script compatible with the font the user
selects, when there is no text selection. Here
is the basic algorithm when the user
chooses a new font from the Font menu:

• Check if there is no text selection (in-
sertion point is flashing).

• If so, check if the current keyscript is
non-Roman.

• If so, check if the script of the font
chosen is different from the keyscript.

• If so, change the keyscript to that of the
chosen font.

This is not the same as changing the
current keyscript based on where the user
clicks in multiscript text, sometimes called
“Font–Keyboard Synchronization.” That is
not recommended to be a default behavior,
and if you implement a feature like that,
you should make it a user preference.

Sorting the Font Menu
You should sort all fonts in your font

menu according to their script, but how you
order the scripts is up to you. There is one
thing that you should consider:

Sort the script of the application’s user
interface translation first, i.e. if the UI is in
English or French or some other Roman
script language, then the Roman script
fonts should be at the top of the Font menu.
If the UI is in Japanese, then the Japanese
fonts should be at the top. This is because
the user is most likely to use the language
of the UI localization in their documents,
and they need those fonts to be the most
accessible, i.e. users of French ClarisWorks
will want fonts that can be used in French
text at the top; users of Japanese
ClarisWorks want the Japanese fonts at the
top. Note that the UI localization script can
be different from the System script, which is
always sorted first by the system. After
placing the localization script’s fonts first,
you can use the MacOS API ScriptOrder()
to figure out which scripts should come
before which others.

Support of Underline in 2-
byte Fonts
QuickDraw on the current version (8.1)

of MacOS does not support underline on
fonts from the Japanese, Simplified Chi-
nese, Traditional Chinese, or Korean scripts.
This is because QuickDraw draws its un-
derline at the baseline of the glyph,
according to the measurements in the font’s
fontMetrics record. The baseline on 2-byte
glyphs in fonts from the unsupported

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

scripts falls on top of part of the character,
so instead of drawing the underline lower,
QuickDraw bails on drawing the underline
at all.

In Figure 5, two characters are drawn
in a Japanese font (Heisei Mincho 72 pt)
and a comparative character is drawn next
to them in a Roman font (Palatino 72 pt).
The ‘M’ in Palatino font has QuickDraw
underline applied, and that line is extended
backwards underneath the two Heisei
Mincho font characters. As you can see, the
QuickDraw underline would have ob-
scured part of the 2-byte character. The
second underline has been drawn further
down in the descent area of the font, and is
consistent with underline placement of
other Japanese applications. That is the line
your application would draw.

Figure 5: Comparing 2-byte Baseline to
“Correct” Underline Position

In some fonts, like Osaka (the appFond
and sysFond of the Japanese version of
MacOS), the underline may appear to be a
little far from the characters if placed in the
middle of the descent area, but most Japa-
nese fonts do not have so large a descent
value as Osaka, so the line ends up much
closer to the text for a more natural look. Of
course, the best solution would be for Japa-
nese and other 2-byte fonts to have a special
adornment table that told the application
where best to draw the underline. Using the
baseline for both underline location and
placement of 1-byte Roman glyphs does not
work in a 2-byte font.

Here is some sample code that draws
the underline 50% into the descent area of
the font if QuickDraw will not draw the
underline for you. It assumes the port has

already been set up with the correct font
and pen size for drawing underlines.

Listing 5: Drawing Your Own Underline
DrawUnderlinedText

void DrawUnderlinedText(
Ptr textPtr, short offset, short length)

{
Point pt1, pt2;
FMetricRec fontMetrics;
ScriptCode script = FontScript();

TextFace(underline); // for fonts that
// are supported

GetPen(&pt1);
DrawText(textPtr, offset, length);
GetPen(&pt2);

if (script == smJapanese ||
script == smTradChinese ||
script == smSimpChinese ||
script == smKorean)

{
FontMetrics(&fontMetrics);
MoveTo(pt1.h, pt1.v +

fontMetrics.descent >> 17);
Line(pt2.h - pt1.h, 0);
MoveTo(pt2.h, pt2.v); // restore pen

// location
}

}

In a future version of the system soft-
ware, it has been said that QuickDraw will
finally support drawing underline on Japa-
nese and other 2-byte fonts as a user
preference.

Truncating Strings
String truncation has been made very

simple with the new MacOS APIs
TruncString() and TruncText(). These func-
tions are used for strings or text that appear
in your user interface where the main rea-
son for truncation is that the string may not
fit in the given pixel width. However, some-
times you don’t care about the pixel width
of the text, but you want to make sure you
don’t cut text off in the middle of a 2-byte
character boundary.

The function below takes a string and a
desired truncation length and a script, and
truncates the string on the nearest character

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

boundary less than or equal to the trunca-
tion length.

Listing 6: Multibyte-safe String Truncation
SmartTruncateString

void SmartTruncateString(Str255 string,
uchar truncLen, ScriptCode script)

{
if (CharacterByteType((Ptr)&string[1],

(short)truncLen, script)
== smFirstByte)

{
string[0] = truncLen - 1;

}
else

string[0] = truncLen;
}

Searching WorldScript Text
Most search algorithms do a straight

byte-compare of text and do not look at
script information. This will not produce
correct results for the same reason that
mojibake occurs: Text will change meaning
depending on what font (script) it is dis-
played in. Therefore, you should put an
additional check on a found text run to
make sure it is the same meaning (script) as
the search string. You can use the Interna-
tional Text Utilities functions
CompareString(), CompareText(), etc., but
the behavior of these functions may not
always be what you want (for example,
sometimes diacritical marks are ignored,
making the strings “Rosé” and “rose” re-
turn equality), and they require the use of a
‘itl2’ sorting resource to do most of the
work.

In the following function, you pass a
search string (from a Find dialog, for exam-
ple) and script information for that string,
and a text buffer with style information
(from the body of your document, for ex-
ample). The function does a byte compare
first, then if the style information and script
information are not NULL, it takes them
into account and returns TRUE if the search
string has been found, and returns the

offset into the text buffer at which the string
was found in a parameter.

Listing 6: WorldScript-savvy Byte Compare
SmartByteCompare

Boolean SmartByteCompare(Str255 searchStr,
ScriptCode script, uchar * textBuffer,
long length, StyleRun ** styles,
long numStyles, long * foundOffset)

{
Boolean found = FALSE;
uchar index1;
long index2;

*foundOffset = -1L;

for (index2 = 0; index2 < length;
index2++)

{
for (index1 = 1;

index1 <= searchStr[0]; index1++)
{

if (searchStr[index1] !=
textBuffer[index2])

break;
else

index2++;
}
if (index1 == searchStr[0])
{

found = TRUE;
break;

}
}

// Now check the script of the stylerun of the found text.
// In real life, you’d also check if the found text crossed
// multiple styleruns and check each of them for the script.
// Also, you would continue searching if the first found
// result
// turned out not to be the same script as the search string.
if (found == TRUE && styles != NULL)
{

long styleIndex;
short font;

styleIndex = FindStyleRunIndex(
styles, numStyles, index2 - index1);

font = (*styles)[styleIndex].font;
if (script != FontToScript(font))

found = FALSE;
}
return found;

}

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

Conclusion
We have examined a few ways you can

make your application run better in
multiscript systems right out of the box,
with no additional localization. Protecting
the user from garbage characters, or
mojibake as it’s known in Japanese, is
something every application should try to
do, even if it is only being sold in a particu-
lar locale. Every technique explained in this
paper revolves around making your code
become script-aware, that is, always to pass
script information along with any text you
may be manipulating internally in your
application. If text has a font, it has a script.
When there are multiple script systems
installed on the user’s system, you want
your application to behave just as grace-
fully as when there is only a single script
installed.

Bibliography and Related
Reading

McCully, Nat. “Supporting Multi-byte Text
In Your Application,” MacTech
Magazine Vol. 14, No. 1. Westlake
Village, CA: Xplain Corporation,
January, 1998.

Apple Computer, Inc. Inside Macintosh:
Text, Menlo Park, CA: Addison Wesley,
March 1993.

Apple Computer, Inc. “Technote OV 20,
Internationalization Checklist,”
Cupertino, CA: Apple Computer, Inc,
November 1993.

Lunde, Ken. Understanding Japanese
Information Processing, Sebastopol,
CA: O’Reilly & Associates, September,
1993.

See also Ken Lunde's home page at <http:/
/www.ora.com/people/authors/
lunde/>. It has more information
about multi-byte text processing on
computers.

About the author...
Prior to joining Apple, Nat McCully

was at Claris in the Japanese Development
Group for six and a half years. He has
worked on numerous Japanese products,
including MacWrite II–J, Filemaker Pro–J,
Claris Impact–J, ClarisDraw–J, and
ClarisWorks–J. He speaks, reads and writes
Japanese, and enjoys traveling in Japan. He
is currently working on the next release of
AppleWorks for Macintosh and Windows
computers. In his free time he rescues or-
phaned kittens from hi-tech companies.

